论文标题
在H-SI上扫描隧道显微镜中的原子和缺陷鉴定的强大多尺度多尺度深度学习(100)2x1表面
Robust multi-scale multi-feature deep learning for atomic and defect identification in Scanning Tunneling Microscopy on H-Si(100) 2x1 surface
论文作者
论文摘要
使用深度学习和扫描隧道显微镜(STM)分析了氢钝化Si(100)表面原子缺陷的性质。一个强大的深度学习框架,能够识别原子种类,在存在非分辨污染物,步骤边缘和噪声的情况下缺陷。自动化工作流程基于几个用于图像评估,原子找到和缺陷发现的网络的组合,以在不同的描述级别进行分析,并在操作STM平台上部署。这进一步扩展到使用平均移位聚类算法对提取的缺陷的无监督分类,该算法利用从神经网络的组合输出中自动设计的功能。这种合并的方法允许在地形上不均匀的表面或真实材料上识别局部和扩展的缺陷。我们的方法本质上是普遍的,可以应用于其他表面,以构建量子材料中原子缺陷的综合库。
The nature of the atomic defects on the hydrogen passivated Si (100) surface is analyzed using deep learning and scanning tunneling microscopy (STM). A robust deep learning framework capable of identifying atomic species, defects, in the presence of non-resolved contaminates, step edges, and noise is developed. The automated workflow, based on the combination of several networks for image assessment, atom-finding and defect finding, is developed to perform the analysis at different levels of description and is deployed on an operational STM platform. This is further extended to unsupervised classification of the extracted defects using the mean-shift clustering algorithm, which utilizes features automatically engineered from the combined output of neural networks. This combined approach allows the identification of localized and extended defects on the topographically non-uniform surfaces or real materials. Our approach is universal in nature and can be applied to other surfaces for building comprehensive libraries of atomic defects in quantum materials.