论文标题

调整具有低级对话的本地区域的图像属性

Adjusting Image Attributes of Localized Regions with Low-level Dialogue

论文作者

Lin, Tzu-Hsiang, Rudnicky, Alexander, Bui, Trung, Kim, Doo Soon, Oh, Jean

论文摘要

自然语言图像编辑(NLIE)旨在使用自然语言说明来编辑图像。由于新手没有图像编辑技术的经验,因此它们的说明通常是模棱两可的,并且包含高级抽象,这些抽象往往与复杂的编辑步骤相对应。在这种缺乏经验的方面,我们旨在通过教学新手使用低级指挥术语来编辑图像来平滑学习曲线。为此,我们开发了一个以任务为导向的对话系统来研究NLIE的低级说明。我们的系统基础语言在编辑操作的层面上,并为用户选择选择。尽管被迫以低级术语表达表达,但用户评估表明,有25%的用户发现我们的系统易于使用,并引起我们的动力。一项分析表明,用户通常适应了提出的低级语言接口。在这项研究中,我们确定该对象细分是用户满意度的关键因素。我们的工作证明了低级,直接语言映射方法的优势,这些方法可以应用于图像编辑之外的其他问题域,例如音频编辑或工业设计。

Natural Language Image Editing (NLIE) aims to use natural language instructions to edit images. Since novices are inexperienced with image editing techniques, their instructions are often ambiguous and contain high-level abstractions that tend to correspond to complex editing steps to accomplish. Motivated by this inexperience aspect, we aim to smooth the learning curve by teaching the novices to edit images using low-level commanding terminologies. Towards this end, we develop a task-oriented dialogue system to investigate low-level instructions for NLIE. Our system grounds language on the level of edit operations, and suggests options for a user to choose from. Though compelled to express in low-level terms, a user evaluation shows that 25% of users found our system easy-to-use, resonating with our motivation. An analysis shows that users generally adapt to utilizing the proposed low-level language interface. In this study, we identify that object segmentation as the key factor to the user satisfaction. Our work demonstrates the advantages of the low-level, direct language-action mapping approach that can be applied to other problem domains beyond image editing such as audio editing or industrial design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源