论文标题

强化学习增强了量子风格的算法,用于组合优化

Reinforcement Learning Enhanced Quantum-inspired Algorithm for Combinatorial Optimization

论文作者

Beloborodov, Dmitrii, Ulanov, A. E., Foerster, Jakob N., Whiteson, Shimon, Lvovsky, A. I.

论文摘要

量子硬件和量子启发的算法越来越流行,用于组合优化。但是,这些算法可能需要为每个问题实例进行仔细的高参数调整。我们将加固学习剂与量子启发的算法结合使用来解决Ising能量最小化问题,这等同于最大切割问题。代理通过调整其参数之一来控制算法,目的是改善最近看到的解决方案。我们提出了一种新的重新排名奖励(R3)方法,该方法可以实现稳定的单人游戏训练的自我播放训练,以帮助代理商逃脱当地的Optima。可以通过从接受随机产生的问题培训的代理商中应用转移学习来加速对任何问题实例的培训。我们的方法允许以高概率对ISIN问题进行高质量的解决方案,并胜过基线启发式方法和黑盒超级参数优化方法。

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源