论文标题

数字字段中的根晶格

Root lattices in number fields

论文作者

Popov, Vladimir L., Zarhin, Yuri G.

论文摘要

我们探讨了一个根晶格是否可能类似于Inner Product $(x,y)的晶格$ \ mathscr o $ n数字$ k $(x,y):= {\ rm trace} _ {k/\ mathbb q}(x \cdotθ(y))$ the $θ$。我们对所有对$ k $,$θ$进行分类,以便$ \ mathscr o $类似于均匀的lattice或root lattice $ \ mathbb z^{[k:\ mathbb q]} $。我们还对所有对$ k $,$θ$进行了分类,以便$ \ mathscr o $是根晶格。除此之外,我们还表明,$ \ mathscr o $从来都不类似于正排名的正等级的晶格$ \ leqslant 48 $,尤其是$ \ mathscr o $与leech lattice并不相似。在附录中,我们为$ \ mathscr o $的判别组的主要组件提供了一般的环节标准。

We explore whether a root lattice may be similar to the lattice $\mathscr O$ of integers of a number field $K$ endowed with the inner product $(x, y):={\rm Trace}_{K/\mathbb Q}(x\cdotθ(y))$, where $θ$ is an involution of $K$. We classify all pairs $K$, $θ$ such that $\mathscr O$ is similar to either an even root lattice or the root lattice $\mathbb Z^{[K:\mathbb Q]}$. We also classify all pairs $K$, $θ$ such that $\mathscr O$ is a root lattice. In addition to this, we show that $\mathscr O$ is never similar to a positive-definite even unimodular lattice of rank $\leqslant 48$, in particular, $\mathscr O$ is not similar to the Leech lattice. In appendix, we give a general cyclicity criterion for the primary components of the discriminant group of $\mathscr O$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源