论文标题

使用基于注意力的LSTM神经网络构建高光分类器

Constructing a Highlight Classifier with an Attention Based LSTM Neural Network

论文作者

Kuehne, Michael, Radu, Marius

论文摘要

在人类历史上,数据比以往任何时候都更大。自然要期望对技术的需求增加,这有助于人类筛选和分析这种无尽的信息供应。这一需求存在于市场研究行业中,其中通过视频录制收集了大量的消费者研究数据。目前,分析视频数据的标准方法是人工劳动。市场研究人员手动审查绝大多数消费者研究视频,以确定相关部分 - 亮点。行业的最新周转比率为2.2-视频内容每小时需要2.2小时的人力。在这项研究中,我们为基于NLP的突出显示和提取基于监督学习模型提供了一种新的方法,该模型促进市场研究人员筛选其数据。我们的方法取决于手动策划的用户生成的精彩片段,该剪辑由长和短形式的视频数据构建。由于视频转录的可用性,该问题最适合NLP方法。我们评估了多种类别的模型,从梯度增强到复发性神经网络,比较它们在提取和识别亮点方面的性能。然后,使用四种旨在分析文档大得多的分析文档的最大输入长度大得多,对最佳性能模型进行评估。我们报告了独立分类器的表现非常高,ROC AUC分数在0.93-0.94范围内,但在对大文档进行评估时,有效性显着下降。根据我们的结果,我们建议用于各种用例的模型/采样算法的组合。

Data is being produced in larger quantities than ever before in human history. It's only natural to expect a rise in demand for technology that aids humans in sifting through and analyzing this inexhaustible supply of information. This need exists in the market research industry, where large amounts of consumer research data is collected through video recordings. At present, the standard method for analyzing video data is human labor. Market researchers manually review the vast majority of consumer research video in order to identify relevant portions - highlights. The industry state of the art turnaround ratio is 2.2 - for every hour of video content 2.2 hours of manpower are required. In this study we present a novel approach for NLP-based highlight identification and extraction based on a supervised learning model that aides market researchers in sifting through their data. Our approach hinges on a manually curated user-generated highlight clips constructed from long and short-form video data. The problem is best suited for an NLP approach due to the availability of video transcription. We evaluate multiple classes of models, from gradient boosting to recurrent neural networks, comparing their performance in extraction and identification of highlights. The best performing models are then evaluated using four sampling methods designed to analyze documents much larger than the maximum input length of the classifiers. We report very high performances for the standalone classifiers, ROC AUC scores in the range 0.93-0.94, but observe a significant drop in effectiveness when evaluated on large documents. Based on our results we suggest combinations of models/sampling algorithms for various use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源