论文标题

HRINET:高分辨率CT图像插值的替代监督网络

HRINet: Alternative Supervision Network for High-resolution CT image Interpolation

论文作者

Li, Jiawei, Koh, Jae Chul, Lee, Won-Sook

论文摘要

医疗区域中的图像插值非常重要,因为大多数3D生物医学体积图像都被采样,其中由于辐射剂量或扫描时间,连续切片之间的距离明显大于平面像素大小。图像插值在已知切片之间创建了许多新切片,以获得各向同性体积图像。结果可用于3D重建和人体结构的可视化质量。事实证明,歧管上的语义插值对于平滑图像插值非常有用。然而,所有以前的方法都集中在低分辨率图像插值上,并且大多数方法在高分辨率图像上工作较差。我们提出了一个新型网络,高分辨率插值网络(HRINET),旨在产生高分辨率的CT图像插值。我们结合了Acai和Gans的想法,并通过应用监督和无监督的培训来提高替代监督方法的新思想,以提高CT中人体器官结构的准确性,同时保持高质量。我们比较了一种基于MSE的基于MSE的基于感知的损失优化方法,以进行高质量的插值,并显示结构上的正确性和清晰度之间的权衡。我们的实验表明,对256 2和5122图像进行了定量和定性的巨大改进。

Image interpolation in medical area is of high importance as most 3D biomedical volume images are sampled where the distance between consecutive slices significantly greater than the in-plane pixel size due to radiation dose or scanning time. Image interpolation creates a number of new slices between known slices in order to obtain an isotropic volume image. The results can be used for the higher quality of 3D reconstruction and visualization of human body structures. Semantic interpolation on the manifold has been proved to be very useful for smoothing image interpolation. Nevertheless, all previous methods focused on low-resolution image interpolation, and most of them work poorly on high-resolution image. We propose a novel network, High Resolution Interpolation Network (HRINet), aiming at producing high-resolution CT image interpolations. We combine the idea of ACAI and GANs, and propose a novel idea of alternative supervision method by applying supervised and unsupervised training alternatively to raise the accuracy of human organ structures in CT while keeping high quality. We compare an MSE based and a perceptual based loss optimizing methods for high quality interpolation, and show the tradeoff between the structural correctness and sharpness. Our experiments show the great improvement on 256 2 and 5122 images quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源