论文标题
投影性品种的野生自动形态,没有不变子集的地图
Wild automorphisms of projective varieties, the maps which have no invariant proper subsets
论文作者
论文摘要
令$ x $为投射品种,而$σ$ a wild a wild Automorthism在$ x $上,即只要$σ(z)= z $,对于非空的zariski封闭式子集$ z $ $ x $,我们都有$ z = x $。然后,$ x $猜想是零熵的$σ$(事实证明,当$ {\ rm dim} \,x \ le 2 $)被Z. Reichstein,D。Rogalski和J. J.这个猜想通常已经开放了十多年。在此注释中,当$ {\ rm dim} \,x \ le 3 $和$ x $时,我们确认了这一原始猜想。
Let $X$ be a projective variety and $σ$ a wild automorphism on $X$, i.e., whenever $σ(Z) = Z$ for a non-empty Zariski-closed subset $Z$ of $X$, we have $Z = X$. Then $X$ is conjectured to be an abelian variety with $σ$ of zero entropy (and proved to be so when ${\rm dim} \, X \le 2$) by Z. Reichstein, D. Rogalski and J. J. Zhang in their study of projectively simple rings. This conjecture has been generally open for more than a decade. In this note, we confirm this original conjecture when ${\rm dim} \, X \le 3$ and $X$ is not a Calabi-Yau threefold, and also show that $σ$ is of zero entropy when ${\rm dim} \, X \le 4$ and the Kodaira dimension $κ(X) \ge 0$.