论文标题

旨在改善视觉注意模型的评估:众包方法

Toward Improving the Evaluation of Visual Attention Models: a Crowdsourcing Approach

论文作者

Zanca, Dario, Melacci, Stefano, Gori, Marco

论文摘要

人类的视觉关注是一个复杂的现象。必须考虑到人们看着哪些是显着位置(固定的空间分布)的计算建模,当它们在这些位置看时,他们可以了解探索的时间发展(固定的时间顺序),以及他们如何从一个位置转移到另一个位置到另一个位置到另一个场景和动力学的动力学(动力学的动力学)。最先进的模型专注于从人类数据中学习显着图,该过程仅考虑了现象的空间组成部分,而忽略了其时间和动力学对应物。在这项工作中,我们着重于人类视觉关注模型的评估方法。我们强调了当前指标的显着性预测和扫描路径相似性的限制,并引入了一项统计措施,以评估模拟眼运动的动力学。尽管深度学习模型在显着性预测中取得了惊人的表现,但我们的分析显示了它们在捕获过程动态方面的局限性。我们发现,尽管简单起见,但无监督的引力模型的表现都超过了所有竞争对手。最后,利用众包平台,我们提出了一项研究,旨在评估无监督的引力模型产生的扫描路径的强烈强度,这对于天真和专家的人类观察者来说似乎是合理的。

Human visual attention is a complex phenomenon. A computational modeling of this phenomenon must take into account where people look in order to evaluate which are the salient locations (spatial distribution of the fixations), when they look in those locations to understand the temporal development of the exploration (temporal order of the fixations), and how they move from one location to another with respect to the dynamics of the scene and the mechanics of the eyes (dynamics). State-of-the-art models focus on learning saliency maps from human data, a process that only takes into account the spatial component of the phenomenon and ignore its temporal and dynamical counterparts. In this work we focus on the evaluation methodology of models of human visual attention. We underline the limits of the current metrics for saliency prediction and scanpath similarity, and we introduce a statistical measure for the evaluation of the dynamics of the simulated eye movements. While deep learning models achieve astonishing performance in saliency prediction, our analysis shows their limitations in capturing the dynamics of the process. We find that unsupervised gravitational models, despite of their simplicity, outperform all competitors. Finally, exploiting a crowd-sourcing platform, we present a study aimed at evaluating how strongly the scanpaths generated with the unsupervised gravitational models appear plausible to naive and expert human observers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源