论文标题

使用深卷积神经网络插入流量数据

Traffic Data Imputation using Deep Convolutional Neural Networks

论文作者

Benkraouda, Ouafa, Thodi, Bilal Thonnam, Yeo, Hwasoo, Menendez, Monica, Jabari, Saif Eddin

论文摘要

我们提出了一种基于统计学习的交通速度估计方法,该方法使用稀疏的车辆轨迹信息。使用基于卷积编码器的体系结构,我们表明训练有素的神经网络可以从时空图中学习时空交通速度动力学。我们使用模拟车辆轨迹为均匀的道路部分进行了证明,然后使用NGSIM的现实世界数据对其进行验证。我们的结果表明,探测器渗透水平低至5 \%,提出的估计方法可以提供宏观交通速度的合理重建,并重现逼真的冲击波模式,这意味着在各种交通条件下适用。我们进一步讨论了该模型的重建机制,并确认了其区分各种交通行为的能力,例如拥挤和自由流量的交通状态,过渡动态和冲击波传播。

We propose a statistical learning-based traffic speed estimation method that uses sparse vehicle trajectory information. Using a convolutional encoder-decoder based architecture, we show that a well trained neural network can learn spatio-temporal traffic speed dynamics from time-space diagrams. We demonstrate this for a homogeneous road section using simulated vehicle trajectories and then validate it using real-world data from NGSIM. Our results show that with probe vehicle penetration levels as low as 5\%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds and reproduce realistic shockwave patterns, implying applicability in a variety of traffic conditions. We further discuss the model's reconstruction mechanisms and confirm its ability to differentiate various traffic behaviors such as congested and free-flow traffic states, transition dynamics, and shockwave propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源