论文标题
通过被动wifi感应和数据挖掘,了解社交活动中的人群行为
Understanding Crowd Behaviors in a Social Event by Passive WiFi Sensing and Data Mining
论文作者
论文摘要
了解大型社交活动中的人群行为对于事件管理至关重要。通过收集从移动设备发送的WiFi探测请求,被动WiFi感应是与人柜台和摄像机相比,在自由干扰,较大的覆盖范围,较低的成本以及有关人们运动的更多信息方面,提供了一种更好的监视人群的方法。但是,在现有的研究中,对收集到的数据的彻底分析和采矿没有足够的关注。特别是,机器学习的力量尚未得到充分利用。因此,在本文中,我们提出了一个全面的数据分析框架,以充分分析收集的探针请求,以在大型社交事件中提取与人群行为相关的三种类型的模式,这些模式借助统计,可视化和无聊的机器学习。首先,从探测请求中提取移动设备的轨迹并进行了分析,以揭示人群运动的空间模式。采用分层聚集聚类来找到不同位置之间的互连。接下来,使用K-均值和K形聚类算法分别按天和位置提取人群的时间访问模式。最后,通过与时间结合,将轨迹转化为时空模式,从而揭示了轨迹持续时间在长度上的变化以及人群移动的总体趋势会随着时间而变化。使用大型社交事件中收集的现实世界数据充分证明了所提出的数据分析框架。结果表明,可以从被动WiFi传感器网络收集的数据中提取全面模式。
Understanding crowd behaviors in a large social event is crucial for event management. Passive WiFi sensing, by collecting WiFi probe requests sent from mobile devices, provides a better way to monitor crowds compared with people counters and cameras in terms of free interference, larger coverage, lower cost, and more information on people's movement. In existing studies, however, not enough attention has been paid to the thorough analysis and mining of collected data. Especially, the power of machine learning has not been fully exploited. In this paper, therefore, we propose a comprehensive data analysis framework to fully analyze the collected probe requests to extract three types of patterns related to crowd behaviors in a large social event, with the help of statistics, visualization, and unsupervised machine learning. First, trajectories of the mobile devices are extracted from probe requests and analyzed to reveal the spatial patterns of the crowds' movement. Hierarchical agglomerative clustering is adopted to find the interconnections between different locations. Next, k-means and k-shape clustering algorithms are applied to extract temporal visiting patterns of the crowds by days and locations, respectively. Finally, by combining with time, trajectories are transformed into spatiotemporal patterns, which reveal how trajectory duration changes over the length and how the overall trends of crowd movement change over time. The proposed data analysis framework is fully demonstrated using real-world data collected in a large social event. Results show that one can extract comprehensive patterns from data collected by a network of passive WiFi sensors.