论文标题
纯高斯类型的D模型和增强的Ind-Sheaves
D-modules of pure Gaussian type and enhanced ind-sheaves
论文作者
论文摘要
纯高斯类型的差分系统是在复杂的投影线上的D模块的示例,在无穷大处具有不规则的奇异性,因此受到Stokes现象的影响。我们采用了增强的IND分子理论以及A. d'Agnolo和M. Kashiwara的全体性D模块的Riemann-Hilbert对应,从而在拓扑上描述了Stokes现象。使用此描述,我们对此框架中纯高斯类型的D模块的傅立叶宽段变换进行了拓扑计算,从而恢复并概括了C. sabbah的结果。
Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann-Hilbert correspondence for holonomic D-modules of A. D'Agnolo and M. Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier-Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of C. Sabbah.