论文标题
一定的耐铁木不平等
A contractive Hardy-Littlewood inequality
论文作者
论文摘要
我们证明了从$ h^p(\ mathbb {t})$,$ 0 <p \ le 2 $的函数的贴花型硬木型不平等,它在前两个泰勒系数中很敏锐,在无限范围内渐近。
We prove a contractive Hardy-Littlewood type inequality for functions from $H^p(\mathbb{T})$, $0 < p \le 2$ which is sharp in the first two Taylor coefficients and asymptotically at infinity.