论文标题

链接到Neumann分数$ p- $ laplacian

Linking over cones for the Neumann Fractional $p-$Laplacian

论文作者

Mugnai, Dimitri, Lippi, Edoardo Proietti

论文摘要

我们认为在存在非局部诺伊曼边界条件下的分数$ p-$ laplacian控制的非线性问题。我们面临两个问题。首先:$ p- $超值期限可能无法满足Ambrosetti-Rabinowitz条件。其次,更重要的是:尽管基本功能的拓扑结构提醒了链接定理之一,但相关特征功能的非本地性质阻止了使用这种经典定理。由于这些原因,我们被依靠在锥体上链接的概念采用另一种方法。

We consider nonlinear problems governed by the fractional $p-$Laplacian in presence of nonlocal Neumann boundary conditions. We face two problems. First: the $p-$superlinear term may not satisfy the Ambrosetti-Rabinowitz condition. Second, and more important: although the topological structure of the underlying functional reminds the one of the linking theorem, the nonlocal nature of the associated eigenfunctions prevents the use of such a classical theorem. For these reasons, we are led to adopt another approach, relying on the notion of linking over cones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源