论文标题

2.75d:通过将3D医学成像代表到2D功能的小数据来增强学习

2.75D: Boosting learning by representing 3D Medical imaging to 2D features for small data

论文作者

Wang, Xin, Su, Ruisheng, Xie, Weiyi, Wang, Wenjin, Xu, Yi, Mann, Ritse, Han, Jungong, Tan, Tao

论文摘要

在Medical-DATA驱动的学习中,3D卷积神经网络(CNN)已开始在许多深度学习任务中显示出优于2D CNN的性能,证明了功能表示中3D空间信息的附加值。但是,很难收集更多的培训样本来收敛,更多的计算资源和更长的执行时间,使这种方法的应用降低了。此外,由于缺乏公开可用的预培训3D模型,在3D CNN上应用转移学习是具有挑战性的。为了解决这些问题,我们提出了一个新颖的2D战略代表体积数据,即2.75d。在这项工作中,通过螺旋旋转技术在单个2D视图中捕获了3D图像的空间信息。结果,2D CNN网络也可以用于学习体积信息。此外,我们可以充分利用预先训练的2D CNN来解决下游视力问题。我们还探索了一个多视图2.75D策略,2.75d 3频道(2.75DX3),以提高2.75d的优势。我们针对分类任务中的2D,2.5D和3D对应物,评估了三个公共数据集上提出的方法(肺CT,乳房MRI和前列腺MRI)。结果表明,当在肺数据集上从头开始训练所有方法时,所提出的方法的表现明显优于其他对应物。在转移学习或培训数据有限的情况下,这种绩效增益更为明显。我们的方法在其他数据集上也实现了可比的性能。此外,与2.5D或3D方法相比,我们的方法可大大减少训练和推理的时间。

In medical-data driven learning, 3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks, proving the added value of 3D spatial information in feature representation. However, the difficulty in collecting more training samples to converge, more computational resources and longer execution time make this approach less applied. Also, applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models. To tackle these issues, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D. In this work, the spatial information of 3D images is captured in a single 2D view by a spiral-spinning technique. As a result, 2D CNN networks can also be used to learn volumetric information. Besides, we can fully leverage pre-trained 2D CNNs for downstream vision problems. We also explore a multi-view 2.75D strategy, 2.75D 3 channels (2.75Dx3), to boost the advantage of 2.75D. We evaluated the proposed methods on three public datasets with different modalities or organs (Lung CT, Breast MRI, and Prostate MRI), against their 2D, 2.5D, and 3D counterparts in classification tasks. Results show that the proposed methods significantly outperform other counterparts when all methods were trained from scratch on the lung dataset. Such performance gain is more pronounced with transfer learning or in the case of limited training data. Our methods also achieved comparable performance on other datasets. In addition, our methods achieved a substantial reduction in time consumption of training and inference compared with the 2.5D or 3D method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源