论文标题

Nektar ++:使用无Jacobian的Newton Krylov方法的隐式,光谱/$ HP $元素的设计和实现,可压缩流量求解器

Nektar++: Design and implementation of an implicit, spectral/$hp$ element, compressible flow solver using a Jacobian-free Newton Krylov approach

论文作者

Yan, Zhen-Guo, Pan, Yu, Castiglioni, Giacomo, Hillewaert, Koen, Peiró, Joaquim, Moxey, David, Sherwin, Spencer J.

论文摘要

在较高的雷诺数字上,使用光谱/$ HP $元素离散化在时间步骤中使用频谱/$ hp $元素离散化的可压缩流仿真使用可能会受到时间步骤的限制。为了减轻这一限制,我们扩展了光谱/$ HP $元素开源软件框架Nektar ++的能力,以包括一个隐式不连续的Galerkin可压缩流量求解器。时间的整合是通过单个对角隐式runge-kutta方法进行的。由无隐式时间集成产生的非线性系统由无雅各布·牛顿·克里洛夫(JACOBIAN NEWTON KRYLOV(JFNK)方法)迭代解决。 JFNK方法的一个有利功能是,它广泛使用了以前的显式实施中可用的显式操作员。从软件设计的角度分析了隐式求解器不同构建块的功能,并将其放置在C ++库中的适当层次级别。在详细的实施中,还分析了求解器不同部分对计算成本,内存消耗和编程复杂性的贡献。采用了分析方法和数值方法的组合,以简化形成预处理矩阵的编程复杂性。使用诸如可压缩的Poiseuille流,Taylor-Green涡流,在$ \ text {re} = 3900 $的圆柱上的湍流和冲击波边界层相互作用等案例进行验证和测试。结果表明,隐式求解器可以加速模拟,同时保持良好的模拟精度。

At high Reynolds numbers, the use of explicit in time compressible flow simulations with spectral/$hp$ element discretization can become significantly limited by time step. To alleviate this limitation we extend the capability of the spectral/$hp$ element open-source software framework, Nektar++, to include an implicit discontinuous Galerkin compressible flow solver. The integration in time is carried out by a singly diagonally implicit Runge-Kutta method. The non-linear system arising from the implicit time integration is iteratively solved by the Jacobian-free Newton Krylov (JFNK) method. A favorable feature of the JFNK approach is its extensive use of the explicit operators available from the previous explicit in time implementation. The functionalities of different building blocks of the implicit solver are analyzed from the point of view of software design and placed in appropriate hierarchical levels in the C++ libraries. In the detailed implementation, the contributions of different parts of the solver to computational cost, memory consumption, and programming complexity are also analyzed. A combination of analytical and numerical methods is adopted to simplify the programming complexity in forming the preconditioning matrix. The solver is verified and tested using cases such as manufactured compressible Poiseuille flow, Taylor-Green vortex, turbulent flow over a circular cylinder at $\text{Re}=3900$ and shock wave boundary-layer interaction. The results show that the implicit solver can speed-up the simulations while maintaining good simulation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源