论文标题
波浪,代数生长和沉积磁盘阵列中的团块
Waves, Algebraic Growth and Clumping in Sedimenting Disk Arrays
论文作者
论文摘要
一系列球体通过粘性流体缓慢下降总是块的[J.M.克劳利(J. Fluid Mech)。 {\ bf 45},151(1971)]。我们表明,各向异性粒子形状定性地改变了集体沉积的标志性不稳定。在磁盘上的实验和理论中,以水平的一维晶格对齐邻居,并在reynolds Number Number $ \ sim 10^{ - 4} $定居,我们发现,在大量的lattice间距偶数的偶数上,将静止稳定性的稳定性固定为稳定,并将其稳定稳定。尽管没有惯性,但所产生的动力学显示了质量和弹簧阵列的波动激发,并以磁盘的集体倾斜形式保持了保守的“动量”,以及粘性水动力相互作用的新出现的弹簧刚度。但是,即使在线性稳定的方案中,动力学基质的非正常特征也会导致扰动的代数生长。稳定性分析划定了波数和晶格间距平面中的相边界,以与我们的实验进行定量一致,将代数生长的波和块状分离。因此,各向异性形状抑制了沉积球阵列的经典线性不稳定性,引入了新的保守变量,并为线性稳定模式的瞬时生长物理学打开了一个窗口。
An array of spheres descending slowly through a viscous fluid always clumps [J.M. Crowley, J. Fluid Mech. {\bf 45}, 151 (1971)]. We show that anisotropic particle shape qualitatively transforms this iconic instability of collective sedimentation. In experiment and theory on disks, aligned facing their neighbours in a horizontal one-dimensional lattice and settling at Reynolds number $\sim 10^{-4}$ in a quasi-two-dimensional slab geometry, we find that for large enough lattice spacing the coupling of disk orientation and translation rescues the array from the clumping instability. Despite the absence of inertia the resulting dynamics displays the wavelike excitations of a mass-and-spring array, with a conserved "momentum" in the form of the collective tilt of the disks and an emergent spring stiffness from the viscous hydrodynamic interaction. However, the non-normal character of the dynamical matrix leads to algebraic growth of perturbations even in the linearly stable regime. Stability analysis demarcates a phase boundary in the plane of wavenumber and lattice spacing, separating the regimes of algebraically growing waves and clumping, in quantitative agreement with our experiments. Anisotropic shape thus suppresses the classic linear instability of sedimenting sphere arrays, introduces a new conserved variable, and opens a window to the physics of transient growth of linearly stable modes.