论文标题

总约束和自由纠缠的群岛。 ii

Archipelagos of Total Bound and Free Entanglement. II

论文作者

Slater, Paul B.

论文摘要

在上述预印本(i)中,我们在这里特别感兴趣的结果是某些三参数Qubit-ququart($ 2 \ tims 4 $)和两分点($ 4 \ times 4 $)分析。在其中,我们依靠Li和Qiao给出的纠缠约束。然而,对我们的进一步研究最终表明 - 使用众所周知的积极和足够的条件,以表明所有领先的未成年人(在这种情况下,可分离的成分)都是无负的 - 所给出的某些约束是有缺陷的,需要替换(较弱的)。这样做会导致一系列新的结果,在质上有些不同,并且在某些方面,本质上更简单。例如,$ \ frac {2} {2} {3} \ left(\ sqrt {2} -1 \ right)\大约0.276142 $,$ \ frac {1} {1} {4} {4 $ \ frac {1} {2} - \ frac {2} {3π^2} \大约0.432453 $和$ \ frac {1} {6} {6} $,以用于各种约束。我们还将Li-Qiao三参数框架采用到两参数的框架,并具有有趣的视觉结果。

In the indicated preceding preprint (I), we reported the results of, in particular interest here, certain three-parameter qubit-ququart ($2 \times 4$) and two-ququart ($4 \times 4$) analyses. In them, we relied upon entanglement constraints given by Li and Qiao. However, further studies of ours conclusively show--using the well-known necessary and sufficient conditions for positive-semidefiniteness that all leading minors (of separable components, in this context) be nonnegative--that certain of the constraints given are flawed and need to be replaced (by weaker ones). Doing so, leads to a new set of results, somewhat qualitatively different and, in certain respects, simpler in nature. For example, bound-entanglement probabilities of $\frac{2}{3} \left(\sqrt{2}-1\right) \approx 0.276142$, $\frac{1}{4} \left(3-2 \log ^2(2)-\log (4)\right) \approx 0.1632$, $\frac{1}{2}-\frac{2}{3 π^2} \approx 0.432453$ and $\frac{1}{6}$, are reported for various implementations of constraints. We also adopt the Li-Qiao three-parameter framework to a two-parameter one, with interesting visual results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源