论文标题

Stickypillars:使用图神经网络在点云上匹配的强大而有效的功能

StickyPillars: Robust and Efficient Feature Matching on Point Clouds using Graph Neural Networks

论文作者

Fischer, Kai, Simon, Martin, Oelsner, Florian, Milz, Stefan, Gross, Horst-Michael, Maeder, Patrick

论文摘要

实时稳健的点云注册是许多映射和本地化算法的重要先决条件。 ICP等传统方法往往会失败而没有良好的初始化,重叠不足或在有动态对象的情况下进行失败。基于深度学习的注册方法的结果要好得多,但遭受了沉重的运行时间。我们通过引入Stickypillars来克服这些缺点,这是一种快速,准确且极其强大的深度中端3D特征匹配方法。它使用图形神经网络,并借助于基于变压器的多头自我和交叉注意,对稀疏的3D密钥点进行上下文聚合。网络输出用作最佳传输问题的成本,该问题的解决方案产生了最终匹配概率。该系统不依赖手工制作的功能描述符或启发式匹配策略。我们在Kitti数据集上显示的注册问题提出了最先进的艺术准确性结果,同时要比领先的深度方法快四次。此外,我们将匹配系统集成到激光射手探测管道中,从而在Kitti Odometry数据集中产生最准确的结果。最后,我们证明了Kitti探光仪的鲁棒性。我们的方法在准确性方面保持稳定,而最先进的程序在框架下降和更高的速度方面失败。

Robust point cloud registration in real-time is an important prerequisite for many mapping and localization algorithms. Traditional methods like ICP tend to fail without good initialization, insufficient overlap or in the presence of dynamic objects. Modern deep learning based registration approaches present much better results, but suffer from a heavy run-time. We overcome these drawbacks by introducing StickyPillars, a fast, accurate and extremely robust deep middle-end 3D feature matching method on point clouds. It uses graph neural networks and performs context aggregation on sparse 3D key-points with the aid of transformer based multi-head self and cross-attention. The network output is used as the cost for an optimal transport problem whose solution yields the final matching probabilities. The system does not rely on hand crafted feature descriptors or heuristic matching strategies. We present state-of-art art accuracy results on the registration problem demonstrated on the KITTI dataset while being four times faster then leading deep methods. Furthermore, we integrate our matching system into a LiDAR odometry pipeline yielding most accurate results on the KITTI odometry dataset. Finally, we demonstrate robustness on KITTI odometry. Our method remains stable in accuracy where state-of-the-art procedures fail on frame drops and higher speeds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源