论文标题
安息:学习深人姿势估计的深层运动学先验
RePose: Learning Deep Kinematic Priors for Fast Human Pose Estimation
论文作者
论文摘要
我们提出了一种新型的高效且轻巧的模型,用于从单个图像中估算人的姿势。我们的模型旨在以各种最新方法的参数数量和计算成本的一小部分获得竞争结果。为此,我们明确地将基于部分的结构和几何先验纳入层次预测框架中。在最粗糙的分辨率和类似于经典部分方法的方式上,我们利用人体的运动学结构来传播关键点或身体部位之间的卷积特征更新。与经典的方法不同,我们通过端到端培训通过数据从数据中进行了更新,以了解此几何。然后,我们以层次结构的最粗糙的分辨率以最粗糙的分辨率传播特征表示,以粗略到细节的方式完善预测的姿势。最终网络有效地对轻量级深神经网络中的几何先验和直觉进行了建模,从而为在两个标准数据集上的这种大小的模型,利兹运动姿势和MPII人类姿势带来了最先进的结果。
We propose a novel efficient and lightweight model for human pose estimation from a single image. Our model is designed to achieve competitive results at a fraction of the number of parameters and computational cost of various state-of-the-art methods. To this end, we explicitly incorporate part-based structural and geometric priors in a hierarchical prediction framework. At the coarsest resolution, and in a manner similar to classical part-based approaches, we leverage the kinematic structure of the human body to propagate convolutional feature updates between the keypoints or body parts. Unlike classical approaches, we adopt end-to-end training to learn this geometric prior through feature updates from data. We then propagate the feature representation at the coarsest resolution up the hierarchy to refine the predicted pose in a coarse-to-fine fashion. The final network effectively models the geometric prior and intuition within a lightweight deep neural network, yielding state-of-the-art results for a model of this size on two standard datasets, Leeds Sports Pose and MPII Human Pose.