论文标题
浏览器的平行性能 - 能量预测建模:伺服案例研究
Parallel Performance-Energy Predictive Modeling of Browsers: Case Study of Servo
论文作者
论文摘要
Mozilla Research正在开发平行的Web浏览器引擎Servo,以利用Web渲染管道中的并行性和并发的好处。并行化可改善Pinterest.com的性能,但没有Google.com的性能。这是因为浏览器的工作量取决于其渲染的网页。在许多情况下,创建,删除和协调并行工作的开销大于其任何好处。在本文中,我们使用有监督的学习对网页映射与Web浏览器的并行性能进行建模。我们发现了一个特征空间,该功能空间代表了网页中可用的并行性,并使用七个关键功能对其进行表征。此外,我们考虑使用自动标签算法来改进性能改进的能源使用权衡。这样的模型使我们能够预测网页中可用的并行性程度,并决定是否并行渲染网页。这种建模对于改善浏览器的性能并最大程度地减少其能源使用情况至关重要。我们通过使用Servo的布局阶段作为案例研究来评估我们的模型。在本研究中考虑的535个网页上,在四核Intel Ivy Bridge(I7-3615QM)笔记本电脑上进行的实验表明,我们可以将性能和能源使用分别提高高达94.52%和46.32%。展望未来,我们确定了将此模型应用于浏览器体系结构以及其他性能和能源至关重要的设备的其他阶段的机会。
Mozilla Research is developing Servo, a parallel web browser engine, to exploit the benefits of parallelism and concurrency in the web rendering pipeline. Parallelization results in improved performance for pinterest.com but not for google.com. This is because the workload of a browser is dependent on the web page it is rendering. In many cases, the overhead of creating, deleting, and coordinating parallel work outweighs any of its benefits. In this paper, we model the relationship between web page primitives and a web browser's parallel performance using supervised learning. We discover a feature space that is representative of the parallelism available in a web page and characterize it using seven key features. Additionally, we consider energy usage trade-offs for different levels of performance improvements using automated labeling algorithms. Such a model allows us to predict the degree of parallelism available in a web page and decide whether or not to render a web page in parallel. This modeling is critical for improving the browser's performance and minimizing its energy usage. We evaluate our model by using Servo's layout stage as a case study. Experiments on a quad-core Intel Ivy Bridge (i7-3615QM) laptop show that we can improve performance and energy usage by up to 94.52% and 46.32% respectively on the 535 web pages considered in this study. Looking forward, we identify opportunities to apply this model to other stages of a browser's architecture as well as other performance- and energy-critical devices.