论文标题

一种用于流体填充多孔固体的数值均质化的有效算法:第一部分

An efficient algorithm for numerical homogenization of fluid filled porous solids: part-I

论文作者

Dana, Saumik, Wheeler, Mary F

论文摘要

调用代表性体积元件或RVE的概念来开发一种用于流体填充多孔固体数值均质化的算法。基于RVE的方法将复合材料分析分析到本地和全球水平的分析中。地方级分析对微结构细节进行了建模,以通过将边界条件应用于RVE并解决所得的边界价值问题来确定有效属性。然后,复合结构被具有计算有效特性的等效均匀材料所取代。我们结合了两种技术的特征:一种是流体相位的位移场的定义,以允许在微观结构上定义连续位移场,另一个是$ fe^2 $数值均质化,该均值将宏观尺度与rve量表通过高斯点结合。

The concept of representative volume element or RVE is invoked to develop an algorithm for numerical homogenization of fluid filled porous solids. RVE based methods decouple analysis of a composite material into analyses at the local and global levels. The local level analysis models the microstructural details to determine effective properties by applying boundary conditions to the RVE and solving the resultant boundary value problem. The composite structure is then replaced by an equivalent homogeneous material having the calculated effective properties. We combine the features of two techniques: one is the definition of a displacement field for the fluid phase to allow for a definition of a continuous displacement field across the microstructure and the other is the $FE^2$ numerical homogenization that couples the macroscale with the RVE scale via gauss points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源