论文标题

在属性规范语言中学习可解释的模型

Learning Interpretable Models in the Property Specification Language

论文作者

Roy, Rajarshi, Fisman, Dana, Neider, Daniel

论文摘要

我们从一组有限的正面和负面示例中了解复杂系统的人类解剖描述的问题。与该领域的大多数工作相反,该领域的大多数工作着重于线性时间逻辑(LTL)表达的描述,我们在IEEE标准时间逻辑PSL(属性规范语言)中开发了公式的学习算法。我们的工作是由于许多自然属性(例如在每个n-the时间点发生的事件)无法以LTL表示的事实,而在PSL中表达此类属性很容易。此外,与LTL中的公式相比,PSL中的公式可以更简洁,更易于解释(由于PSL公式中的正则表达式)。 我们的学习算法建立在用于学习LTL公式的现有算法之上。粗略地说,我们的算法将学习任务减少到命题逻辑中的约束满意度问题,然后使用SAT求解器以渐进的方式搜索解决方案。我们已经实施了算法,并在拟议的方法和现有的LTL学习算法之间进行了比较研究。我们的结果说明了提出的方法提供了从示例中提供简洁的人解剖描述的有效性。

We address the problem of learning human-interpretable descriptions of a complex system from a finite set of positive and negative examples of its behavior. In contrast to most of the recent work in this area, which focuses on descriptions expressed in Linear Temporal Logic (LTL), we develop a learning algorithm for formulas in the IEEE standard temporal logic PSL (Property Specification Language). Our work is motivated by the fact that many natural properties, such as an event happening at every n-th point in time, cannot be expressed in LTL, whereas it is easy to express such properties in PSL. Moreover, formulas in PSL can be more succinct and easier to interpret (due to the use of regular expressions in PSL formulas) than formulas in LTL. Our learning algorithm builds on top of an existing algorithm for learning LTL formulas. Roughly speaking, our algorithm reduces the learning task to a constraint satisfaction problem in propositional logic and then uses a SAT solver to search for a solution in an incremental fashion. We have implemented our algorithm and performed a comparative study between the proposed method and the existing LTL learning algorithm. Our results illustrate the effectiveness of the proposed approach to provide succinct human-interpretable descriptions from examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源