论文标题

通过分配蒸馏损失改善硬样品的面部识别

Improving Face Recognition from Hard Samples via Distribution Distillation Loss

论文作者

Huang, Yuge, Shen, Pengcheng, Tai, Ying, Li, Shaoxin, Liu, Xiaoming, Li, Jilin, Huang, Feiyue, Ji, Rongrong

论文摘要

大型面部变化是面部识别的主要挑战。为此,先前特定于变化的方法在设计特殊的网络损失之前充分利用了与任务相关的方法,这通常在不同的任务和方案中并不是一般的。相比之下,现有的通用方法着重于提高特征可区分性,以最大程度地降低阶级距离,同时最大化阶级距离,该类别的距离在简单的样本上表现良好,但在硬样品上失败了。为了提高这些硬性任务的硬样品的性能,我们提出了一种新颖的分配蒸馏损失,以缩小简易和硬样品之间的性能差距,这对于各种各样的面部变化都是一种简单,有效且有效的。具体而言,我们首先采用最先进的分类器(例如Arcface)来构建两个相似性分布:从简易样本中分布和从硬样本中的学生分发。然后,我们提出了一种新颖的分布驱动的损失,以限制学生的分布以近似教师分布,从而导致学生分布中正面和负面对之间的重叠较小。我们已经对一般的大规模面部基准和基准进行了广泛的实验,并且在种族,分辨率和姿势方面都有不同的变化。定量结果证明了我们方法比强基线的优越性,例如弧形和界面。

Large facial variations are the main challenge in face recognition. To this end, previous variation-specific methods make full use of task-related prior to design special network losses, which are typically not general among different tasks and scenarios. In contrast, the existing generic methods focus on improving the feature discriminability to minimize the intra-class distance while maximizing the interclass distance, which perform well on easy samples but fail on hard samples. To improve the performance on those hard samples for general tasks, we propose a novel Distribution Distillation Loss to narrow the performance gap between easy and hard samples, which is a simple, effective and generic for various types of facial variations. Specifically, we first adopt state-of-the-art classifiers such as ArcFace to construct two similarity distributions: teacher distribution from easy samples and student distribution from hard samples. Then, we propose a novel distribution-driven loss to constrain the student distribution to approximate the teacher distribution, which thus leads to smaller overlap between the positive and negative pairs in the student distribution. We have conducted extensive experiments on both generic large-scale face benchmarks and benchmarks with diverse variations on race, resolution and pose. The quantitative results demonstrate the superiority of our method over strong baselines, e.g., Arcface and Cosface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源