论文标题
兼容重写非交换性多项式用于证明操作员身份
Compatible rewriting of noncommutative polynomials for proving operator identities
论文作者
论文摘要
本文的目的是证明使用非交通性多项式之间的平等性证明操作员身份。通常,多项式表达在运算符方面无效,因为它可能与相应运算符的域和代码不兼容。最近,一些作者引入了一个基于标记的Quivers的框架,以严格地将多项式身份转化为操作员身份。在本文中,我们将框架扩展并适应重写和多项式减少的背景。我们对用于重写的多项式提供了足够的条件,以确保标准多项式还原自动尊重操作员的域和代码。最后,我们调整了非交换性布赫伯格程序,以计算其他兼容多项式进行重写。在软件包运算符中,我们还提供了开发的概念的实现。
The goal of this paper is to prove operator identities using equalities between noncommutative polynomials. In general, a polynomial expression is not valid in terms of operators, since it may not be compatible with domains and codomains of the corresponding operators. Recently, some of the authors introduced a framework based on labelled quivers to rigorously translate polynomial identities to operator identities. In the present paper, we extend and adapt the framework to the context of rewriting and polynomial reduction. We give a sufficient condition on the polynomials used for rewriting to ensure that standard polynomial reduction automatically respects domains and codomains of operators. Finally, we adapt the noncommutative Buchberger procedure to compute additional compatible polynomials for rewriting. In the package OperatorGB, we also provide an implementation of the concepts developed.