论文标题

一阶复制测试

First-Order Tests for Toricity

论文作者

Rahkooy, Hamid, Sturm, Thomas

论文摘要

由化学反应网络理论中稳态理想的符号分析引起的问题所引起的,我们考虑了测试与非零坐标的复杂或真实变化点中的点是否形成乘法基团的固定位置。该特性对应于转移的转变,这是对相应多项式理想的静态性的最新概括。关键思想是对品种的几何视图,而不是对理想的代数观点。最近,已经提出了针对复杂和真实品种的相应coset测试。前者将众多技术从交换算法代数与Gröbner碱基作为中央算法工具相结合。后者基于在算法侧具有实际量词消除技术的实际封闭场中解释的一阶逻辑。在这里,我们对复杂而真实的这两种理论采取了一种新的逻辑方法。除替代算法外,我们的方法还提供了关于领域理论的统一观点,并有助于理解该地区富裕现有文献的相关性和互连,该文献一直集中在复杂数字上,而从科学的角度来看,(正)真实数字显然是化学反应网络理论中的相关领域。我们将新方法的原型实现应用于来自生物模型存储库的129个模型。

Motivated by problems arising with the symbolic analysis of steady state ideals in Chemical Reaction Network Theory, we consider the problem of testing whether the points in a complex or real variety with non-zero coordinates form a coset of a multiplicative group. That property corresponds to Shifted Toricity, a recent generalization of toricity of the corresponding polynomial ideal. The key idea is to take a geometric view on varieties rather than an algebraic view on ideals. Recently, corresponding coset tests have been proposed for complex and for real varieties. The former combine numerous techniques from commutative algorithmic algebra with Gröbner bases as the central algorithmic tool. The latter are based on interpreted first-order logic in real closed fields with real quantifier elimination techniques on the algorithmic side. Here we take a new logic approach to both theories, complex and real, and beyond. Besides alternative algorithms, our approach provides a unified view on theories of fields and helps to understand the relevance and interconnection of the rich existing literature in the area, which has been focusing on complex numbers, while from a scientific point of view the (positive) real numbers are clearly the relevant domain in chemical reaction network theory. We apply prototypical implementations of our new approach to a set of 129 models from the BioModels repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源