论文标题
具有邻居相互作用的双线性图神经网络
Bilinear Graph Neural Network with Neighbor Interactions
论文作者
论文摘要
图形神经网络(GNN)是学习表示形式并在图形数据上进行预测的强大模型。 GNN上的现有努力在很大程度上将图形卷积定义为连接节点的特征的加权总和,以形成目标节点的表示。然而,加权总和的操作假设邻居节点彼此独立,并且忽略了它们之间的可能相互作用。当存在这种相互作用时,例如两个邻居节点的共发生是目标节点特征的强信号,现有的GNN模型可能无法捕获信号。在这项工作中,我们认为建模GNN中邻居节点之间的相互作用的重要性。我们提出了一个新的图形卷积运算符,该操作员通过邻居节点表示的成对相互作用来增强加权总和。我们将该框架称为双线性图神经网络(BGNN),它通过邻居节点之间的双线性相互作用来提高GNN表示能力。特别是,我们分别基于众所周知的GCN和GAT指定了两个名为BGCN和BGAT的BGNN模型。半监视节点分类的三个公共基准测试的实证结果验证了BGNN-BGCN(BGAT)在分类准确性方面的有效性优于1.6%(1.5%)的效果。
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data. Existing efforts on GNN have largely defined the graph convolution as a weighted sum of the features of the connected nodes to form the representation of the target node. Nevertheless, the operation of weighted sum assumes the neighbor nodes are independent of each other, and ignores the possible interactions between them. When such interactions exist, such as the co-occurrence of two neighbor nodes is a strong signal of the target node's characteristics, existing GNN models may fail to capture the signal. In this work, we argue the importance of modeling the interactions between neighbor nodes in GNN. We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes. We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes. In particular, we specify two BGNN models named BGCN and BGAT, based on the well-known GCN and GAT, respectively. Empirical results on three public benchmarks of semi-supervised node classification verify the effectiveness of BGNN -- BGCN (BGAT) outperforms GCN (GAT) by 1.6% (1.5%) in classification accuracy.Codes are available at: https://github.com/zhuhm1996/bgnn.