论文标题
全dielectric纳米antennas和metasurfaces的非线性光学元件
Nonlinear optics at all-dielectric nanoantennas and metasurfaces
论文作者
论文摘要
等离子元面免受相匹配的限制,对光学非线性的控制和通过工程亚波长度元原子提高了非线性产生效率的贡献显着贡献。但是,高耗散性损失和不可避免的热加热限制了其在非线性纳米光子学中的适用性。在其纳米结构中支持电气和磁性MIE型共振的全端元信息,似乎是非线性等离子体学的有希望的替代品。高索引介电纳米结构,允许其他磁共振,可以诱导磁性非线性效应,而磁性非线性效应随着电非线性提高了非线性转换效率。此外,低耗散损失和高伤害阈值为在高泵强度下运行提供了额外的自由度,从而大大增加了非线性过程。在这篇综述中,我们讨论了全dielectric非线性纳米结构和元信息的强烈发展领域的当前最新面积,包括MIE模式的作用,FANO共振和谐波产生,波浪混合和超级快速光学切换的Anapole矩。此外,我们使用全dielectric MetaSurfaces回顾了非线性相和波前控制中的最新进展。我们讨论技术,以实现用于多功能应用和从CMOS兼容材料的二阶非线性过程的全dielectric Metasurfaces。
Freed from phase-matching constraints, plasmonic metasurfaces have contributed significantly to the control of the optical nonlinearity and enhancing the nonlinear generation efficiency by engineering subwavelength meta-atoms. However, the high dissipative losses and the inevitable thermal heating limit their applicability in nonlinear nanophotonics. All-dielectric metasurfaces, supporting both electric and magnetic Mie-type resonances in their nanostructures, have appeared as a promising alternative to nonlinear plasmonics. High-index dielectric nanostructures, allowing additional magnetic resonances, can induce magnetic nonlinear effects, which along with electric nonlinearities increase the nonlinear conversion efficiency. In addition, low dissipative losses and high damage thresholds provide an extra degree of freedom for operating at high pump intensities, resulting in a considerable enhancement of the nonlinear processes. In this review, we discuss the current state-of-the-art in the intensely developing area of all-dielectric nonlinear nanostructures and metasurfaces, including the role of Mie modes, Fano resonances and anapole moments for harmonic generation, wave mixing, and ultrafast optical switching. Furthermore, we review the recent progress in the nonlinear phase and wavefront control using all-dielectric metasurfaces. We discuss techniques to realize all-dielectric metasurfaces for multifunctional applications and generation of second-order nonlinear processes from CMOS compatible materials.