论文标题
公平的相关聚类
Fair Correlation Clustering
论文作者
论文摘要
在本文中,我们研究了在公平限制下相关聚类的问题。在经典的相关聚类问题中,为我们提供了一个完整的图表,其中每个边缘都标记为正或负面。目的是获得最小化分歧的顶点的聚类 - 捕获在群集内的负边数的数量以及不同簇之间的正边缘。 我们考虑了每个节点具有颜色的相关聚类问题的公平限制的两种变化,目标是形成不会过分代表任何颜色的顶点的簇。 第一个变体旨在生成具有最小分歧的集群,其中每个集群中特征(例如性别)的分布与全局分布相同。对于两种颜色的情况,当每个集群中所需的颜色数为$ 1:p $时,我们得到$ \ Mathcal {o}(p^2)$ - 近似算法。我们的算法可以扩展到多种颜色的情况。我们证明这个问题是NP-HARD。 第二个变体认为簇中任何颜色的节点数量的相对上限和下限。目的是避免违反与每个集群中每种颜色相对应的上限和下限,同时最小化分歧的总数。除了我们的理论结果外,我们还展示了算法通过对现实世界数据集的经验评估来产生公平群集的有效性。
In this paper we study the problem of correlation clustering under fairness constraints. In the classic correlation clustering problem, we are given a complete graph where each edge is labeled positive or negative. The goal is to obtain a clustering of the vertices that minimizes disagreements -- the number of negative edges trapped inside a cluster plus positive edges between different clusters. We consider two variations of fairness constraint for the problem of correlation clustering where each node has a color, and the goal is to form clusters that do not over-represent vertices of any color. The first variant aims to generate clusters with minimum disagreements, where the distribution of a feature (e.g. gender) in each cluster is same as the global distribution. For the case of two colors when the desired ratio of the number of colors in each cluster is $1:p$, we get $\mathcal{O}(p^2)$-approximation algorithm. Our algorithm could be extended to the case of multiple colors. We prove this problem is NP-hard. The second variant considers relative upper and lower bounds on the number of nodes of any color in a cluster. The goal is to avoid violating upper and lower bounds corresponding to each color in each cluster while minimizing the total number of disagreements. Along with our theoretical results, we show the effectiveness of our algorithm to generate fair clusters by empirical evaluation on real world data sets.