论文标题

非radial解决方案的模式,用于轴上耦合半线性椭圆系统的模式

Patterns of Non-Radial Solutions to Coupled Semilinear Elliptic Systems on a Disc

论文作者

Balanov, Z., Hooton, E., Krawcewicz, W., Rachinskii, D.

论文摘要

在本文中,我们证明了问题$ - \ triangle u = f(z,u)$,$ u | _ {\ partial d} = 0 $ in Tips disc $ d:= \ {z \ in \ mathbb c:| z | e | <1 \ f in $ f^k $ f^k $ f^k y in o o f(z \ n p^k)功能,相对于零$ $在零和满足$ f(e^{iθ} z,u),u)= f(z,u)$ in \ in \ mathbb r $,$ f(z,-u)= - f(z,z,u)$的满足$ u $。在假设$ f $尊重$ \ mathbb r^k $上的额外(空间)对称性的假设,我们研究了相应的非radial解决方案的对称属性。抽象结果由一个数字示例提供支持,其中包含额外的$ S_4 $ -symetries。

In this paper, we prove the existence of non-radial solutions to the problem $-\triangle u=f(z,u)$, $u|_{\partial D}=0$ on the unit disc $D:=\{z\in \mathbb C : |z|<1\}$ with $u(z)\in \mathbb R^k$, where $f$ is a sub-linear continuous function, differentiable with respect to $u$ at zero and satisfying $f(e^{iθ}z,u) = f(z,u)$ for all $θ\in \mathbb R$, $f(z,-u)=- f(z,u)$. Under the assumption that $f$ respects additional (spacial) symmetries on $\mathbb R^k$, we investigate symmetric properties of the corresponding non-radial solutions. The abstract result is supported by a numerical example with extra $S_4$-symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源