论文标题

非平稳队列的加权堤防路径

Weighted Dyck paths for nonstationary queues

论文作者

Bet, Gianmarco, Selen, Jori, Zocca, Alessandro

论文摘要

我们考虑了一个队列的模型,其中只有固定的数字$ n $可以加入。每个客户在分布指数的时间内独立加入队列。假设服务时间是独立的并遵循指数分布,则可以将该系统描述为在有限的三角形区域$ \ Mathfrak s $的二维马尔可夫过程中。我们将最终的随机步行解释为$ \ mathfrak s $上的随机步行为一种根据某些沿着一个轴恒定的状态依赖性过渡概率加权的戴克路径,但相当一般。我们通过引入适当的生成功能来利用模型的递归结构来解开所得复杂的组合结构。这使我们能够在任何繁忙时期(等效地,等于对角线上方的dyck路径的任何游览的长度)作为加权总和,在Dyck路径的某些子类中交替,其研究具有独立的兴趣。

We consider a model for a queue in which only a fixed number $N$ of customers can join. Each customer joins the queue independently at an exponentially distributed time. Assuming further that the service times are independent and follow an exponential distribution, this system can be described as a two-dimensional Markov process on a finite triangular region $\mathfrak S$ of the square lattice. We interpret the resulting random walk on $\mathfrak S$ as a Dyck path that is weighted according to some state-dependent transition probabilities that are constant along one axis, but are rather general otherwise. We untangle the resulting intricate combinatorial structure by introducing appropriate generating functions that exploit the recursive structure of the model. This allows us to derive a fully explicit expression for the probability density function of the number of customers served in any busy period (equivalently, of the length of any excursion of the Dyck path above the diagonal) as a weighted sum with alternating sign over a certain subclass of Dyck paths, whose study is of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源