论文标题

数据视觉:学习通过算法抽象观察

Data Vision: Learning to See Through Algorithmic Abstraction

论文作者

Passi, Samir, Jackson, Steven J.

论文摘要

学习通过数据查看至关重要的算法知识生产形式。虽然通常被表示是规则的机械应用,但使算法与数据一起使用需要大量的工作。本文探讨了在数据分析学习环境中经常发散机械化和酌处权的要求。利用CSCW和社会科学的研究以及在两个数据学习环境中的民族志现场工作,我们展示了算法的应用如何有时被视为规则的机械序列,而在其他时候则是一系列位置决策。将数据分析作为基于规则的(而不是规则结合)的实践,我们表明,有效的数据愿景需要可能的分析师跨越正式抽象和经验意外的竞争需求。我们通过讨论数据视觉的概念如何帮助更好地利用人类工作在数据分析学习,研究和实践中的作用来结束。

Learning to see through data is central to contemporary forms of algorithmic knowledge production. While often represented as a mechanical application of rules, making algorithms work with data requires a great deal of situated work. This paper examines how the often-divergent demands of mechanization and discretion manifest in data analytic learning environments. Drawing on research in CSCW and the social sciences, and ethnographic fieldwork in two data learning environments, we show how an algorithm's application is seen sometimes as a mechanical sequence of rules and at other times as an array of situated decisions. Casting data analytics as a rule-based (rather than rule-bound) practice, we show that effective data vision requires would-be analysts to straddle the competing demands of formal abstraction and empirical contingency. We conclude by discussing how the notion of data vision can help better leverage the role of human work in data analytic learning, research, and practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源