论文标题

在Cassini成像科学子系统的磁盘分辨图像中自动删除虚假的图像星

Automatic removal of false image stars in disk-resolved images of the Cassini Imaging Science Subsystem

论文作者

Zhang, Qingfeng, Lu, Zhicong, Zhou, Xiaomei, Zheng, Yang, Li, Zhan, Peng, Qingyu, Long, Shun, Zhu, Weiheng

论文摘要

拍摄大量图像,Cassini Imaging Science子系统(ISS)通常用于天体测量法。在ISS图像中,磁盘分辨的对象通常会导致对恒星的错误检测,这些恒星干扰了相机指向校正。这项研究的目的是开发一种自动处理方法,以在ISS图像中的磁盘分辨对象中删除错误的图像星。该方法包括以下步骤:提取边缘,分割边界弧,拟合圆圈和排除错误的图像星。使用200个ISS图像测试了所提出的方法。初步的实验结果表明,它可以以全自动的方式以超过95%的ISS图像中的95%的ISS图像去除虚假的图像星,即,基于圆形霍夫变换(CHT)的传统圆形检测优于17%。此外,它的速度速度是CHT方法的两倍以上。与CHT相比,它也更健壮(不需要手动参数调整)。所提出的方法还应用于一组ISS rheA图像,以消除指向自动过程中校正的不匹配。实验结果表明,最终天文测量结果的精度比没有该方法的自动程序的精度约为自动过程的2倍。事实证明,所提出的方法以全自动方式有助于ISS图像的天体图像。

Taking a large amount of images, the Cassini Imaging Science Subsystem (ISS) has been routinely used in astrometry. In ISS images, disk-resolved objects often lead to false detection of stars that disturb the camera pointing correction. The aim of this study was to develop an automated processing method to remove the false image stars in disk-resolved objects in ISS images. The method included the following steps: extracting edges, segmenting boundary arcs, fitting circles and excluding false image stars. The proposed method was tested using 200 ISS images. Preliminary experimental results show that it can remove the false image stars in more than 95% of ISS images with disk-resolved objects in a fully automatic manner, i.e. outperforming the traditional circle detection based on Circular Hough Transform (CHT) by 17%. In addition, its speed is more than twice as fast as that of the CHT method. It is also more robust (no manual parameter tuning is needed) when compared with CHT. The proposed method was also applied to a set of ISS images of Rhea to eliminate the mismatch in pointing correction in automatic procedure. Experiment results showed that the precision of final astrometry results can be improve by roughly 2 times than that of automatic procedure without the method. It proved that the proposed method is helpful in the astrometry of ISS images in fully automatic manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源