论文标题

在$ K $ -SET系统约束下流式传输次管

Streaming Submodular Maximization under a $k$-Set System Constraint

论文作者

Haba, Ran, Kazemi, Ehsan, Feldman, Moran, Karbasi, Amin

论文摘要

在本文中,我们提出了一个新颖的框架,该框架将单调量子次传输最大化的流算法转换为非单词酮suplodular最大化的流算法。这种减少很容易导致当前最紧密的确定性近似值率,但要受到$ k $ - 摩尔匹配的约束。此外,我们提出了第一个用于单调supsodular最大化的流算算法,约为$ k $伸缩性和$ k $ set的系统约束。加上我们提出的减少,我们获得了$ O(k \ log k)$和$ o(k^2 \ log k)$(k^2 \ log k)$近似比分别受上述约束约束。我们在一系列实验中广泛评估了算法对现有工作的经验性能,包括在随机生成的图中找到最大独立设置,从而最大程度地提高了社交网络上的线性功能,电影推荐,Yelp位置摘要以及Twitter数据摘要。

In this paper, we propose a novel framework that converts streaming algorithms for monotone submodular maximization into streaming algorithms for non-monotone submodular maximization. This reduction readily leads to the currently tightest deterministic approximation ratio for submodular maximization subject to a $k$-matchoid constraint. Moreover, we propose the first streaming algorithm for monotone submodular maximization subject to $k$-extendible and $k$-set system constraints. Together with our proposed reduction, we obtain $O(k\log k)$ and $O(k^2\log k)$ approximation ratio for submodular maximization subject to the above constraints, respectively. We extensively evaluate the empirical performance of our algorithm against the existing work in a series of experiments including finding the maximum independent set in randomly generated graphs, maximizing linear functions over social networks, movie recommendation, Yelp location summarization, and Twitter data summarization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源