论文标题
法图的同事
Fatou's associates
论文作者
论文摘要
假设$ f $是一个先验的整个功能,$ v \ subsetneq \ mathbb {c} $是一个简单的连接域,$ u $是$ f^{ - 1}(v)$的连接组件。使用Riemann Maps,我们将映射$ f \ colon u \与V $相关联,与内部函数$ g \ colon \ mathbb {d} \ to \ Mathbb {d} $。很容易看到$ g $是有限的Blaschke产品,或者,具有适当的归一化可以作为无限的Blaschke产品。 我们表明,当$ f $ in $ v $的奇异值远离边界时,$ g $的奇异性与$ u $中的无穷大之间存在牢固的关系。如果$ u $是$ f $的远期不变的fatou组成部分,则可以非常重要地概括了对地图$ g $的奇异性数量的较早结果。 如果$ u $是$ f $的远期不变的fatou组成部分,那么很少有一些示例对$ $(f,u)$与函数$ g $之间的关系进行了计算。我们研究了几个著名的整个功能的著名家庭的关系。 也很自然地询问可以以这种方式出现哪种有限的蓝雪产品,我们显示以下内容:对于每种有限的blaschke Product $ g $,其朱莉娅(Julia)的设置与单位圆相吻合,整个功能$ f $与不变的fatou组件都存在,因此$ g $与$ g $相关。此外,在属性中存在一个先验的整个函数$ f $,即任何有限的blaschke产品都可以由与限制$ f $相关的内部函数任意近似于wandering域。
Suppose that $f$ is a transcendental entire function, $V \subsetneq \mathbb{C}$ is a simply connected domain, and $U$ is a connected component of $f^{-1}(V)$. Using Riemann maps, we associate the map $f \colon U \to V$ to an inner function $g \colon \mathbb{D} \to \mathbb{D}$. It is straightforward to see that $g$ is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of $f$ in $V$ lie away from the boundary, there is a strong relationship between singularities of $g$ and accesses to infinity in $U$. In the case where $U$ is a forward-invariant Fatou component of $f$, this leads to a very significant generalisation of earlier results on the number of singularities of the map $g$. If $U$ is a forward-invariant Fatou component of $f$ there are currently very few examples where the relationship between the pair $(f, U)$ and the function $g$ have been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this way, and we show the following: For every finite Blaschke product $g$ whose Julia set coincides with the unit circle, there exists a transcendental entire function $f$ with an invariant Fatou component such that $g$ is associated to $f$ in the above sense. Furthermore, there exists a single transcendental entire function $f$ with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated to the restriction of $f$ to a wandering domain.