论文标题
从具有Lévy噪声的随机动力学系统的数据中发现过渡现象
Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise
论文作者
论文摘要
从观察到和模拟数据中分析复杂的动态是一个艰巨的问题。从数据中提取动态行为的一个优点是,这种方法可以研究其数学模型不可用的非线性现象。本工作的目的是从具有非高斯Lévy噪声的随机微分方程数据中提取有关过渡现象(例如,平均退出时间和逃生概率)的信息。作为描述动力学系统的工具,Koopman Semigroup将非线性系统转换为线性系统,但以将有限的维度问题提升到无限的维度为代价。尽管如此,使用随机的Koopman Semigroup与随机微分方程的无限发电机之间的关系,我们了解了平均退出时间和逃脱数据的概率。具体而言,我们首先通过扩展的动态模式分解算法获得了无限发生器的有限尺寸近似。然后,我们确定了随机微分方程的漂移系数,扩散系数和异常扩散系数。最后,我们通过有限的非局部偏微分方程的有限差异化来计算平均退出时间和逃逸概率。这种方法适用于从随机微分方程的数据中提取(高斯)布朗运动或(非高斯)莱维运动的过渡信息。我们提出一个和二维的例子,以证明我们的方法的有效性。
It is a challenging issue to analyze complex dynamics from observed and simulated data. An advantage of extracting dynamic behaviors from data is that this approach enables the investigation of nonlinear phenomena whose mathematical models are unavailable. The purpose of this present work is to extract information about transition phenomena (e.g., mean exit time and escape probability), from data of stochastic differential equations with non-Gaussian Lévy noise. As a tool in describing dynamical systems, the Koopman semigroup transforms a nonlinear system into a linear system, but at the cost of elevating a finite dimensional problem into an infinite dimensional one. In spite of this, using the relation between the stochastic Koopman semigroup and the infinitesimal generator of a stochastic differential equation, we learn the mean exit time and escape probability from data. Specifically, we first obtain a finite dimensional approximation of the infinitesimal generator by an extended dynamic mode decomposition algorithm. Then we identify the drift coefficient, diffusion coefficient and anomalous diffusion coefficient for the stochastic differential equation. Finally, we compute the mean exit time and escape probability by finite difference discretization of the associated nonlocal partial differential equations. This approach is applicable in extracting transition information from data of stochastic differential equations with either (Gaussian) Brownian motion or (non-Gaussian) Lévy motion. We present one - and two-dimensional examples to demonstrate the effectiveness of our approach.