论文标题

在离线和在线优化中可行集合的曲率

Curvature of Feasible Sets in Offline and Online Optimization

论文作者

Molinaro, Marco

论文摘要

众所周知,凸优化中可行集合的曲率允许具有更好的收敛速率的算法,并且对于离线和在线问题,人们对此主题的兴趣已引起人们的兴趣。在本文中,利用几何形状和凸分析的结果,我们进一步了解了曲率在优化中的作用: - 我们首先显示了两个曲率概念的等效性,即强凸和尺寸,证明了Abernethy等人的猜想。结果,这表明,王和亚洲的Frank-Wolfe型方法加速了收敛速率$ o(\ frac {1} {t^2})$,超出了强烈凸出的可行集,而没有(convex)目标功能的其他假设。 - 在在线线性优化中,我们确定了两个主要属性,这些属性有助于解释\ emph {为什么/何时}跟随领导者(FTL)对强烈凸的集合只有对数遗憾。这使得人们可以直接恢复Huang等人的最新结果,并表明FTL在无效的载体是非负的时都对强烈凸电的对数遗憾。 - 我们通过强烈凸面,同时平稳地交易近似误差和曲率,为近似凸体提供了有效的程序。这使得人们可以将改进的算法扩展到强凸集,从而将其扩展到一般的凸组集。作为具体应用,我们扩展了Dekel等人的结果。在在线线性优化中,提示通用凸组。

It is known that the curvature of the feasible set in convex optimization allows for algorithms with better convergence rates, and there has been renewed interest in this topic both for offline as well as online problems. In this paper, leveraging results on geometry and convex analysis, we further our understanding of the role of curvature in optimization: - We first show the equivalence of two notions of curvature, namely strong convexity and gauge bodies, proving a conjecture of Abernethy et al. As a consequence, this show that the Frank-Wolfe-type method of Wang and Abernethy has accelerated convergence rate $O(\frac{1}{t^2})$ over strongly convex feasible sets without additional assumptions on the (convex) objective function. - In Online Linear Optimization, we identify two main properties that help explaining \emph{why/when} Follow the Leader (FTL) has only logarithmic regret over strongly convex sets. This allows one to directly recover a recent result of Huang et al., and to show that FTL has logarithmic regret over strongly convex sets whenever the gain vectors are non-negative. - We provide an efficient procedure for approximating convex bodies by strongly convex ones while smoothly trading off approximation error and curvature. This allows one to extend the improved algorithms over strongly convex sets to general convex sets. As a concrete application, we extend the results of Dekel et al. on Online Linear Optimization with Hints to general convex sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源