论文标题

通过实验优化,在10-12水平的铜微波腔中,在10-12水平上的共振频率测量通过实验优化

Resonance frequency measurement with accuracy and stability at the 10-12 level in a copper microwave cavity below 26 K by experimental optimization

论文作者

Zhang, Haiyang, Gao, Bo, Liu, Wenjing, Pan, Changzhao, Han, Dongxu, Luo, Ercang, Pitre, Laurent

论文摘要

单压折射率气体温度计(SPRIGT)是一种新型的原发性温度,由CAS的TIPC在中国和法国的LNE-CNAM共同开发。为了实现0.25 mk的竞争不确定性,应比2 ppb更好地测量热力学温度测量,高稳定性和低确定性。本文介绍了如何通过基于Allan方差分析的实验优化方法实现铜微波腔中共振频率测量的高稳定性和低确定性。以这种方式,通过整合时间为3小时,微波共振频率测量的10-12水平准确性和稳定性比我们先前的工作中没有优化的时间好20倍(Sci。Bull2019; 64:286-288)。它在气体计量学和其他研究领域中具有潜在的应用,其中需要高稳定性和低确定性微波测量。此外,在(5至26)K的温度范围内(30、60、90和120)kPa的压力(5至26)K的压力进行了微波测量,在确定的热力学温度下具有良好的微波模式一致性。这些将为中国实施Sprigt的成功提供大力支持。

Single pressure refractive index gas thermometry (SPRIGT) is a novel primary thermometry, jointly developed by TIPC of CAS in China and LNE-Cnam in France. To realize a competitive uncertainty of 0.25 mK for thermodynamic temperature measurements, high-stability and low-uncertainty of microwave resonance frequency measurements better than 2 ppb should be achieved. This article describes how to realize high-stability and low-uncertainty of resonance frequency measurements in a copper microwave cavity by experimental optimization methods based on Allan analysis of variance. In this manner, 10-12 level accuracy and stability of microwave resonance frequency measurements were realized with an integration time of 3 hours, which is nearly 20 times better than those without optimization in our previous work (Sci. Bull 2019; 64: 286-288). It has potential applications in gas metrology and other research fields, where high-stability and low-uncertainty microwave measurements are necessary. Besides, microwave measurements were carried out isobarically at pressures of (30, 60, 90, and 120) kPa over the temperature range of (5 to 26) K, with good microwave mode consistency for the determined thermodynamic temperatures. These will provide strong support for the success of the implementation of SPRIGT in China.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源