论文标题

倾向于阅读超越面部的稀疏感4D影响识别

Towards Reading Beyond Faces for Sparsity-Aware 4D Affect Recognition

论文作者

Behzad, Muzammil, Vo, Nhat, Li, Xiaobai, Zhao, Guoying

论文摘要

在本文中,我们提出了一个自动4D面部表达识别(FER)的稀疏感知深网。给定4D数据,我们首先提出了一种新颖的增强方法,以解决深度学习的数据限制问题。这是通过将输入数据投影到RGB和深度映射图像,然后迭代执行随机通道串联来实现的。在给定的3D地标在给定的3D地标中,我们还引入了一种有效的方法来捕获三个正交计划(顶部)的面部肌肉运动,这是多视图上的顶部标记。重要的是,我们提出了一个稀疏感知的深网,以计算多视图上卷积特征的稀疏表示。这不仅对更高的识别精度有效,而且在计算方面也很方便。为了进行培训,最高地标和稀疏表示形式用于训练长期记忆(LSTM)网络。当学习的功能与多视图协作时,可以实现精致的预测。在BU-4DFE数据集上取得的广泛实验结果通过达到4D FER的有希望的精度为99.69%,这表明了我们方法对最先进方法的重要性。

In this paper, we present a sparsity-aware deep network for automatic 4D facial expression recognition (FER). Given 4D data, we first propose a novel augmentation method to combat the data limitation problem for deep learning. This is achieved by projecting the input data into RGB and depth map images and then iteratively performing randomized channel concatenation. Encoded in the given 3D landmarks, we also introduce an effective way to capture the facial muscle movements from three orthogonal plans (TOP), the TOP-landmarks over multi-views. Importantly, we then present a sparsity-aware deep network to compute the sparse representations of convolutional features over multi-views. This is not only effective for a higher recognition accuracy but is also computationally convenient. For training, the TOP-landmarks and sparse representations are used to train a long short-term memory (LSTM) network. The refined predictions are achieved when the learned features collaborate over multi-views. Extensive experimental results achieved on the BU-4DFE dataset show the significance of our method over the state-of-the-art methods by reaching a promising accuracy of 99.69% for 4D FER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源