论文标题
数据驱动的非线性空气弹性模型用于控制的翅膀
Data-driven nonlinear aeroelastic models of morphing wings for control
论文作者
论文摘要
准确有效的航空弹性模型对于实现高度灵活的航空航天结构的优化和控制至关重要,这些航空航天结构有望在未来的运输和能源系统中普遍存在。先进的材料和变形翼技术导致下一代航空弹性系统的特征是空气动力学和结构动力学之间的高耦合和非线性相互作用。在这项工作中,我们利用新兴的数据驱动的建模技术来开发高度准确且可操作的降低阶弹性弹性模型,这些模型在广泛的操作条件上有效,并且适合控制。特别是,我们通过控制(DMDC)算法对最近的动态模式分解开发了两种扩展,以使其适用于柔性航空弹性系统:1)我们引入了一种配方以处理代数方程,并且2)我们开发了一种插值方案,以平稳连接在不同操作方案中开发的几种线性DMDC模型。因此,创新在于准确地对多个操作机制上耦合的航空结构动力学的非线性进行建模,而不是将模型的有效性限制在线性化点周围的狭窄区域。我们在空气中风能(AWE)系统的高保真,三维数值模型上证明了这种方法,尽管该方法通常适用于任何高度耦合的气体弹性系统或在多个操作方案中运行的动态系统。我们提出的建模框架可以实时预测灵活的航空航天结构的非稳态气弹性响应,我们证明了模型预测性控制的增强模型性能。因此,所提出的建筑可能有助于使下一代变形技术的广泛采用。
Accurate and efficient aeroelastic models are critically important for enabling the optimization and control of highly flexible aerospace structures, which are expected to become pervasive in future transportation and energy systems. Advanced materials and morphing wing technologies are resulting in next-generation aeroelastic systems that are characterized by highly-coupled and nonlinear interactions between the aerodynamic and structural dynamics. In this work, we leverage emerging data-driven modeling techniques to develop highly accurate and tractable reduced-order aeroelastic models that are valid over a wide range of operating conditions and are suitable for control. In particular, we develop two extensions to the recent dynamic mode decomposition with control (DMDc) algorithm to make it suitable for flexible aeroelastic systems: 1) we introduce a formulation to handle algebraic equations, and 2) we develop an interpolation scheme to smoothly connect several linear DMDc models developed in different operating regimes. Thus, the innovation lies in accurately modeling the nonlinearities of the coupled aerostructural dynamics over multiple operating regimes, not restricting the validity of the model to a narrow region around a linearization point. We demonstrate this approach on a high-fidelity, three-dimensional numerical model of an airborne wind energy (AWE) system, although the methods are generally applicable to any highly coupled aeroelastic system or dynamical system operating over multiple operating regimes. Our proposed modeling framework results in real-time prediction of nonlinear unsteady aeroelastic responses of flexible aerospace structures, and we demonstrate the enhanced model performance for model predictive control. Thus, the proposed architecture may help enable the widespread adoption of next-generation morphing wing technologies.