论文标题

加权功能空间中的核嵌入

Nuclear embeddings in weighted function spaces

论文作者

Haroske, Dorothee D., Skrzypczak, Leszek

论文摘要

我们研究BESOV和Triebel-lizorkin型的加权空间的核嵌入,其中权重属于某些粉碎型类别,并且本质上是多项式类型的。在这里,我们可以扩展先前的结果[17,19],在其中研究了相应嵌入的紧凑性。核性的概念可以追溯到格罗伦迪克(Grothendieck),后者在[14]中定义了它。最近,研究此类问题引起了人们的兴趣[5-8,49]。这使我们在加权环境中进行了调查。我们获得了相应嵌入的核性的完整特征。基本工具是在小波基础,操作员理想技术方面的离散化,也是TONG [43]的非常有用的结果,内容涉及在$ \ ell_p $空间中作用的对角线操作员的核性。这样,我们可以进一步促进[5,33,34,49]中获得的核嵌入的表征。

We study nuclear embeddings for weighted spaces of Besov and Triebel-Lizorkin type where the weight belongs to some Muckenhoupt class and is essentially of polynomial type. Here we can extend our previous results [17,19] where we studied the compactness of corresponding embeddings. The concept of nuclearity goes back to Grothendieck who defined it in [14]. Recently there is a refreshed interest to study such questions [5-8,49]. This led us to the investigation in the weighted setting. We obtain complete characterisations for the nuclearity of the corresponding embedding. Essential tools are a discretisation in terms of wavelet bases, operator ideal techniques, as well as a very useful result of Tong [43] about the nuclearity of diagonal operators acting in $\ell_p$ spaces. In that way we can further contribute to the characterisation of nuclear embeddings on domains obtained in [5,33,34,49].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源