论文标题
在张量产物的中央序列代数von Neumann代数
On central sequence algebras of tensor product von Neumann algebras
论文作者
论文摘要
我们表明,当$ m,n_ {1},n_ {2} $是带有$ m'\ cap m^ω$ abelian的tracial von neumann代数在$(m \ bar {\ otimes} n_ {1} \ bar {\ otimes} n_ {2})^ω$中上下班。结果,我们获得了有关$ \ rm {ii} _ {1} $ $ m \ bar {\ otimes} n $的麦克巴德分解信息的信息,其中$ m $是非mcduff因子。
We show that when $M,N_{1},N_{2}$ are tracial von Neumann algebras with $M'\cap M^ω$ abelian, $M'\cap(M\bar{\otimes}N_{1})^ω$ and $M'\cap(M\bar{\otimes}N_{2})^ω$ commute in $(M\bar{\otimes}N_{1}\bar{\otimes}N_{2})^ω$. As a consequence, we obtain information on McDuff decompositions of $\rm{II}_{1}$ factors of the form $M\bar{\otimes}N$, where $M$ is a non-McDuff factor.