论文标题

推论归纳:贝叶斯加固学习的新型框架

Inferential Induction: A Novel Framework for Bayesian Reinforcement Learning

论文作者

Eriksson, Hannes, Jorge, Emilio, Dimitrakakis, Christos, Basu, Debabrota, Grover, Divya

论文摘要

贝叶斯强化学习(BRL)为增强学习提供了决策理论解决方案。尽管“基于模型”的BRL算法集中于在模型或值函数上保持后验分布,并将其与近似动态编程或树搜索相结合,而先前的贝叶斯“无模型”值函数分布方法隐含地做出了强大的假设或近似值。我们描述了一种新型的贝叶斯框架,推理诱导,以从数据中正确推断价值函数分布,从而导致新的BRL算法的发展。我们使用此框架设计了一种算法,贝叶斯向后感应。我们通过实验表明,所提出的算法在艺术状态方面具有竞争力。

Bayesian reinforcement learning (BRL) offers a decision-theoretic solution for reinforcement learning. While "model-based" BRL algorithms have focused either on maintaining a posterior distribution on models or value functions and combining this with approximate dynamic programming or tree search, previous Bayesian "model-free" value function distribution approaches implicitly make strong assumptions or approximations. We describe a novel Bayesian framework, Inferential Induction, for correctly inferring value function distributions from data, which leads to the development of a new class of BRL algorithms. We design an algorithm, Bayesian Backwards Induction, with this framework. We experimentally demonstrate that the proposed algorithm is competitive with respect to the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源