论文标题
空白的语言模型
Blank Language Models
论文作者
论文摘要
我们提出了空白的语言模型(BLM),该模型通过动态创建和填充空白来生成序列。空白控制序列的哪一部分要扩展,使BLM非常适合各种文本编辑和重写任务。该模型可以从单个空白或部分完成的文本开始,该文本在指定位置有空白。它迭代地确定要将哪个单词放在空白中,以及是否插入新的空白,并在没有空白时停止生成。可以使用边缘数据可能性的下限进行有效训练BLM。在填写缺少文本片段的任务上,BLM在准确性和流利度方面显着胜过所有其他基线。关于样式转移和损坏的古代文本修复的实验证明了该框架对广泛应用的潜力。
We propose Blank Language Model (BLM), a model that generates sequences by dynamically creating and filling in blanks. The blanks control which part of the sequence to expand, making BLM ideal for a variety of text editing and rewriting tasks. The model can start from a single blank or partially completed text with blanks at specified locations. It iteratively determines which word to place in a blank and whether to insert new blanks, and stops generating when no blanks are left to fill. BLM can be efficiently trained using a lower bound of the marginal data likelihood. On the task of filling missing text snippets, BLM significantly outperforms all other baselines in terms of both accuracy and fluency. Experiments on style transfer and damaged ancient text restoration demonstrate the potential of this framework for a wide range of applications.