论文标题
大气侵蚀巨人对陆地行星的影响
Atmospheric Erosion by Giant Impacts onto Terrestrial Planets
论文作者
论文摘要
我们使用3D平滑的颗粒流体动力学模拟具有足够的分辨率直接模拟低质量大气的命运,从而研究了巨大的巨大撞击,可以通过巨大的巨大行星侵蚀大气的机制。我们提出了一个简单的缩放定律,以估计该制度中任何影响角度和速度损失的分数。在规范的月球形成撞击中,碰撞的直接影响只会损失大约10%的大气。从删除几乎没有的几乎所有大气中都有逐渐过渡,因为它变得更加正面或速度增加,包括低冲击角度的复杂的,非单调的行为。相反,对于正面影响,速度稍高会突然消除更多的气氛。我们的结果广泛地与直接从我们的模拟中测得的地面速度的一维模型的应用一致的局部气氛损失的应用。然而,从理想的点质量影响产生的冲击波传播的先前分析模型显着低估了地面速度,因此总侵蚀。对冲击角度的强烈依赖性以及多个非线性和不对称损耗机制的相互作用突出了对3D模拟的需求,以做出现实的预测。
We examine the mechanisms by which atmosphere can be eroded by giant impacts onto Earth-like planets with thin atmospheres, using 3D smoothed particle hydrodynamics simulations with sufficient resolution to directly model the fate of low-mass atmospheres. We present a simple scaling law to estimate the fraction lost for any impact angle and speed in this regime. In the canonical Moon-forming impact, only around 10% of the atmosphere would have been lost from the immediate effects of the collision. There is a gradual transition from removing almost none to almost all of the atmosphere for a grazing impact as it becomes more head-on or increases in speed, including complex, non-monotonic behaviour at low impact angles. In contrast, for head-on impacts, a slightly greater speed can suddenly remove much more atmosphere. Our results broadly agree with the application of 1D models of local atmosphere loss to the ground speeds measured directly from our simulations. However, previous analytical models of shock-wave propagation from an idealised point-mass impact significantly underestimate the ground speeds and hence the total erosion. The strong dependence on impact angle and the interplay of multiple non-linear and asymmetrical loss mechanisms highlight the need for 3D simulations in order to make realistic predictions.