论文标题
在不合同的图上略有临界渗透率I:有限簇的分布
Slightly supercritical percolation on nonamenable graphs I: The distribution of finite clusters
论文作者
论文摘要
We study the distribution of finite clusters in slightly supercritical ($p \downarrow p_c$) Bernoulli bond percolation on transitive nonamenable graphs, proving in particular that if $G$ is a transitive nonamenable graph satisfying the $L^2$ boundedness condition ($p_c<p_{2\to 2}$) and $K$ denotes the cluster of the origin then there exists $Δ> 0 $使得$ \ MathBf {p} _p(n \ leq | k | <\ infty)\ asymp n^{ - 1/2} \ exp \ exp \ left [-θ\ bigl(| p-p_c |^2 n \ bigr) \operatorname{Rad}(K) < \infty) \asymp r^{-1} \exp\left[ -Θ\Bigl( |p-p_c| r\Bigr) \right] \] for every $p\in (p_c-δ,p_c+δ)$ and $n,r\geq 1$, where all implicit constants depend only on $G$.我们特别推断出,关键指数$γ'$和$δ'$描述了有限群集矩的增长速度,为$ p \ downarrow p_c $分别以$ 1 $和$ 2 $的平均野外值和$ 2 $。 这些结果特别适用于非元素双曲线基团的Cayley图,带有树木的产品以及光谱半径$ρ<1/2 $的瞬时图。特别是,每个有限生成的不合格组都有一个Cayley图,这些结果适用于该图。它们是不适合不是树的图形的。相应的事实尚未在$ \ mathbb {z}^d $上理解,甚至对于$ d $非常大。在本系列的第二篇论文中,我们将应用这些结果来研究在同一环境中无限略微临界簇的几何和光谱特性。
We study the distribution of finite clusters in slightly supercritical ($p \downarrow p_c$) Bernoulli bond percolation on transitive nonamenable graphs, proving in particular that if $G$ is a transitive nonamenable graph satisfying the $L^2$ boundedness condition ($p_c<p_{2\to 2}$) and $K$ denotes the cluster of the origin then there exists $δ>0$ such that $$ \mathbf{P}_p(n \leq |K| < \infty) \asymp n^{-1/2} \exp\left[ -Θ\Bigl( |p-p_c|^2 n\Bigr) \right] $$ and \[ \mathbf{P}_p(r \leq \operatorname{Rad}(K) < \infty) \asymp r^{-1} \exp\left[ -Θ\Bigl( |p-p_c| r\Bigr) \right] \] for every $p\in (p_c-δ,p_c+δ)$ and $n,r\geq 1$, where all implicit constants depend only on $G$. We deduce in particular that the critical exponents $γ'$ and $Δ'$ describing the rate of growth of the moments of a finite cluster as $p \downarrow p_c$ take their mean-field values of $1$ and $2$ respectively. These results apply in particular to Cayley graphs of nonelementary hyperbolic groups, to products with trees, and to transitive graphs of spectral radius $ρ<1/2$. In particular, every finitely generated nonamenable group has a Cayley graph to which these results apply. They are new for graphs that are not trees. The corresponding facts are yet to be understood on $\mathbb{Z}^d$ even for $d$ very large. In a second paper in this series, we will apply these results to study the geometric and spectral properties of infinite slightly supercritical clusters in the same setting.