论文标题

没有妥协的弱监督的分解

Weakly-Supervised Disentanglement Without Compromises

论文作者

Locatello, Francesco, Poole, Ben, Rätsch, Gunnar, Schölkopf, Bernhard, Bachem, Olivier, Tschannen, Michael

论文摘要

智能代理人应该能够通过观察其环境变化来学习有用的表示形式。我们对诸如非i.i.d对的观察结果进行建模。图像共享至少一个基本变化因素。首先,我们从理论上表明,只知道有多少个因素发生了变化,但不知道哪些因素足以学习分离的表示形式。其次,我们提供实用的算法,这些算法可以从图像对中学习分离的表示,而无需注释组,个体因素或已更改的因素数量。第三,我们进行了一项大规模的实证研究,并表明这样的观察成对足以可靠地学习几个基准数据集的分离表示。最后,我们评估了我们学到的表示形式,并发现它们在各种任务中同时有用,包括在协变性转移,公平和抽象推理下的概括。总体而言,我们的结果表明,薄弱的监督能够在现实的情况下学习有用的分解表示。

Intelligent agents should be able to learn useful representations by observing changes in their environment. We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation. First, we theoretically show that only knowing how many factors have changed, but not which ones, is sufficient to learn disentangled representations. Second, we provide practical algorithms that learn disentangled representations from pairs of images without requiring annotation of groups, individual factors, or the number of factors that have changed. Third, we perform a large-scale empirical study and show that such pairs of observations are sufficient to reliably learn disentangled representations on several benchmark data sets. Finally, we evaluate our learned representations and find that they are simultaneously useful on a diverse suite of tasks, including generalization under covariate shifts, fairness, and abstract reasoning. Overall, our results demonstrate that weak supervision enables learning of useful disentangled representations in realistic scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源