论文标题
有针对性的展示广告:优惠附件的情况
Targeted display advertising: the case of preferential attachment
论文作者
论文摘要
平均每天接触成人数百个数字广告(https://www.mediasdynamicsinc.com/uploads/files/files/pr092214-note-only-note-only-150-ads-cm.pdf),使数字广告行业成为大数据驱动平台的经典典范。因此,广告技术行业依靠历史参与日志(点击或购买)来确定合作伙伴广告活动的潜在感兴趣的用户(一个想要针对其产品的卖方的卖方)。为合作伙伴展示的广告数量,因此可用于合作伙伴的历史运动数据取决于合作伙伴的预算限制。因此,可以为高预算伙伴收集足够的数据来进行准确的预测,而低预算伙伴并非如此。数据的偏斜分布导致针对性的显示广告平台“优先附件”向高预算合作伙伴。在本文中,我们开发了“域适应性”方法,以应对使用数据不足的合作伙伴(即Tail Partners)预测感兴趣的用户的挑战。具体而言,我们开发了简单而有效的方法,以利用合作伙伴之间的相似性将信息从合作伙伴转移到有足够数据的合作伙伴到冷启动合作伙伴,即没有任何广告系列数据的合作伙伴。我们的方法很容易通过渐进的微调来适应新的广告系列数据,因此在各个广告系列的不同点上工作,而不仅仅是寒冷。我们对主要展示广告平台(https://www.criteo.com/)的历史日志进行了实验分析。具体来说,我们在他们的竞选活动的各个方面评估了149个合作伙伴的方法。实验结果表明,在活动的不同时间点,所提出的方法表现优于其他“域适应性”方法。
An average adult is exposed to hundreds of digital advertisements daily (https://www.mediadynamicsinc.com/uploads/files/PR092214-Note-only-150-Ads-2mk.pdf), making the digital advertisement industry a classic example of a big-data-driven platform. As such, the ad-tech industry relies on historical engagement logs (clicks or purchases) to identify potentially interested users for the advertisement campaign of a partner (a seller who wants to target users for its products). The number of advertisements that are shown for a partner, and hence the historical campaign data available for a partner depends upon the budget constraints of the partner. Thus, enough data can be collected for the high-budget partners to make accurate predictions, while this is not the case with the low-budget partners. This skewed distribution of the data leads to "preferential attachment" of the targeted display advertising platforms towards the high-budget partners. In this paper, we develop "domain-adaptation" approaches to address the challenge of predicting interested users for the partners with insufficient data, i.e., the tail partners. Specifically, we develop simple yet effective approaches that leverage the similarity among the partners to transfer information from the partners with sufficient data to cold-start partners, i.e., partners without any campaign data. Our approaches readily adapt to the new campaign data by incremental fine-tuning, and hence work at varying points of a campaign, and not just the cold-start. We present an experimental analysis on the historical logs of a major display advertising platform (https://www.criteo.com/). Specifically, we evaluate our approaches across 149 partners, at varying points of their campaigns. Experimental results show that the proposed approaches outperform the other "domain-adaptation" approaches at different time points of the campaigns.