论文标题
数据增强对使用深神经网络短的单铅ECG信号中房颤分类的影响
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
论文作者
论文摘要
心血管疾病是全球死亡率的最常见原因。在无症状阶段检测房颤(AF)可以帮助预防中风。它还通过提供合适的治疗(例如抗凝治疗,及时)来改善临床决策。这种早期检测在心电图(ECG)信号中AF的临床意义激发了近年来的许多研究,其中许多人的目的是通过利用机器学习算法来解决这项任务。但是,包含AF样品的ECG数据集通常会遭受严重的类失衡的困扰,如果不这样做会影响分类算法的性能。数据增强是解决此问题的流行解决方案。 在这项研究中,我们研究了各种数据增强算法的影响,例如过采样,高斯混合模型(GMM)和生成的对抗网络(GAN)对解决类失衡问题的影响。这些算法是定量和定性评估,比较和讨论的。结果表明,基于深度学习的AF信号分类方法与使用GMM相比,使用GAN和GMM的数据增强比过采样更多。此外,GAN在F1得分方面的表现相当,同时与GMM相当地执行,GAN平均会导致大约3美元的AF分类精度。
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the delivery of suitable treatment such as, anticoagulant therapy, in a timely manner. The clinical significance of such early detection of AF in electrocardiogram (ECG) signals has inspired numerous studies in recent years, of which many aim to solve this task by leveraging machine learning algorithms. ECG datasets containing AF samples, however, usually suffer from severe class imbalance, which if unaccounted for, affects the performance of classification algorithms. Data augmentation is a popular solution to tackle this problem. In this study, we investigate the impact of various data augmentation algorithms, e.g., oversampling, Gaussian Mixture Models (GMMs) and Generative Adversarial Networks (GANs), on solving the class imbalance problem. These algorithms are quantitatively and qualitatively evaluated, compared and discussed in detail. The results show that deep learning-based AF signal classification methods benefit more from data augmentation using GANs and GMMs, than oversampling. Furthermore, the GAN results in circa $3\%$ better AF classification accuracy in average while performing comparably to the GMM in terms of f1-score.