论文标题

链接和签名公式的斜率

Slopes of links and signature formulas

论文作者

Degtyarev, Alex, Florens, Vincent, Lecuona, Ana G.

论文摘要

我们在一个积分同源性球体中提出了一个新的不变,称为斜率,是一个彩色链接,并使用此不变性来完成两个链接的剪接的签名公式。我们开发了许多计算斜率和一些消失结果的方法。此外,我们一方面讨论了坡度的一致性,并与康威多项式建立了密切的关系,另一方面与kojima- yamasaki $η$ function(在单变量的情况下)和Cochran不变型。

We present a new invariant, called slope, of a colored link in an integral homology sphere and use this invariant to complete the signature formula for the splice of two links. We develop a number of ways of computing the slope and a few vanishing results. Besides, we discuss the concordance invariance of the slope and establish its close relation to the Conway polynomials, on the one hand, and to the Kojima--Yamasaki $η$-function (in the univariate case) and Cochran invariants, on the other hand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源