论文标题
正方形上的对称16-vertex模型的完全非大学性
Full nonuniversality of the symmetric 16-vertex model on the square lattice
论文作者
论文摘要
我们考虑了在相邻边缘状态的任何排列下,其顶点权重不变的平方晶格上的对称两种状态16 vertex模型。顶点重量参数仅限于在仪表转换下是自动划分的临界流。通过使用角传递矩阵重量化组方法来研究模型的临界特性。该方法的准确性将在两个确切可解决的情况下进行测试:在属于不同普遍性类别的零字段中,Baxter 8-Vertex模型的ISING模型和一个特定版本。数值结果表明,两个确切的可解决的情况通过以极化为阶参数的临界点线连接。有数值的迹象表明,关键指数沿着这一行持续变化,以至于违反了薄弱的普遍性假设。
We consider the symmetric two-state 16-vertex model on the square lattice whose vertex weights are invariant under any permutation of adjacent edge states. The vertex-weight parameters are restricted to a critical manifold which is self-dual under the gauge transformation. The critical properties of the model are studied numerically by using the Corner Transfer Matrix Renormalization Group method. Accuracy of the method is tested on two exactly solvable cases: the Ising model and a specific version of the Baxter 8-vertex model in a zero field that belong to different universality classes. Numerical results show that the two exactly solvable cases are connected by a line of critical points with the polarization as the order parameter. There are numerical indications that critical exponents vary continuously along this line in such a way that the weak universality hypothesis is violated.